flatymatical flethod of Myplicl

Agroblemi 6

6.1 Solve the following wave equation with damping proportional to velocity,

$$
\frac{\partial^{2} u(x, t)}{\partial x^{2}}=\frac{1}{c^{2}} \frac{\partial^{2} u(x, t)}{\partial t^{2}}+\gamma \frac{\partial u(x, t)}{\partial t},
$$

with the boundary conditions in the form

$$
\begin{aligned}
& u(0, t)=u(L, t)=0 \\
& u(x, 0)=u_{0} \sin \frac{\pi x}{L}
\end{aligned}
$$

and the initial condition

$$
\left.\frac{\partial u(x, t)}{\partial t}\right|_{t=0}=0 .
$$

6.2 Find the eigenfunctions and eigenenergies of a particle of mass m which is contained inside a cylinder of radius a and height L.
6.3 In a stationary state, the temperature distribution inside a sphere of radius a is described by the Laplace's equation. Solve it assuming that the surface of the sphere's top half is maintained at constant temperature T_{0}, while the surface of its bottom half is kept at $T=0$.

